PHARMA FRONTLINE

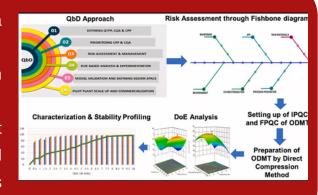
NEWS ETTER

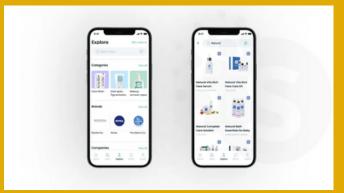
MARCH -2024

(BIMONTHLY)

ISSUE #6

Dept. of Pharmaceutics & Regulatory Affairs




NETWORKING NANO BIOSENSORS FOR WIRELESS COMMUNICATION IN THE BLOOD

- · Advancements in Nano Biosensors
- In-Depth Research: Networking Possibilities
- Industry Innovations
- Challenges and Solutions
- · Regulatory Insights
- Future Visions

QBD IN TABLET COMPRESSION

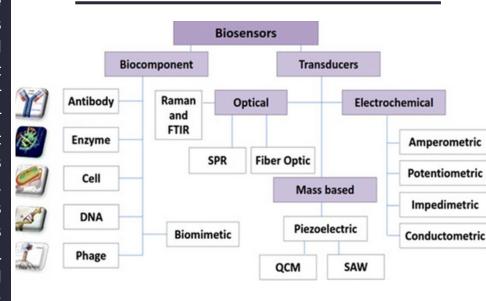
- Lamination problems can be predicted or troubleshooted with a tableting equipment
- Quality by Design (QbD) plays a crucial role in this optimization process.
- Formulation scientists, guided by Quality Target Product Profiles (QTPP) and process flow charts, identify material attributes (MA), quality attributes (QA), and process parameters (PP) necessary to achieve the desired QTPP.

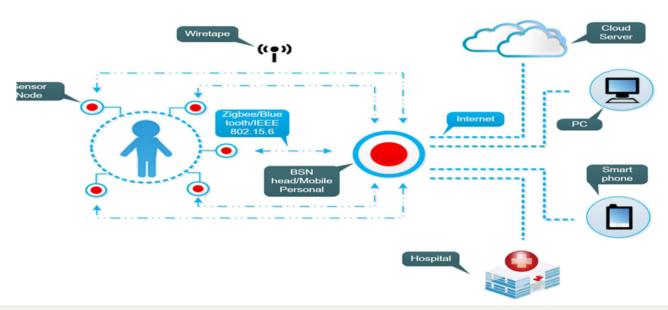
MEDICONNECT

- MediConnect is a mobile application that serves as a tool to connect doctors with companies that deliver medical products.
- Our main goals in developing this app

NETWORKING NANO BIOSENSORS FOR WIRELESS COMMUNICATION IN THE BLOOD

Embark on a journey into the future of healthcare with our feature, "Networking Nano Biosensors in Bloodstream Communication." Delve into the latest nano biosensor advancements, exploring miniaturization and real-time monitoring. Witness the integration of wireless communication technologies within the bloodstream and gain insights into groundbreaking research projects. Stay abreast of industry leaders shaping this transformative landscape, revolutionizing patient care.


First, there was the Internet of Things (IoT) and now, at the interface of computer science and biology, the Internet of Bio-Nano Things (IoBNT) promises to revolutionize medicine and health care. The IoBNT refers to biosensors that collect and process data, nano-scale Labs-on-a-Chip that run medical tests inside the body, the use of bacteria to design biological nano-machines that can detect pathogens, and nano-robots that swim through the bloodstream to perform targeted drug delivery and treatment.


"Biomolecular communication has emerged as the most suitable paradigm for networking nano-implants". It's an incredible idea that we can send data by encoding it into molecules which then go through the bloodstream and we can communicate with them, guiding them on where to go and when to release their treatments, just like hormones.

· In the realm of nano biosensors. cutting-edge developments reshaping the landscape with a focus miniaturization, sensitivity, real-time monitoring. Recent advancements have propelled sensor technology to new heights, allowing for the creation of smaller, more efficient devices. Enhanced sensitivity ensures precise detection of biomolecules, while real-time monitoring capabilities healthcare professionals empower with instantaneous access to critical data, revolutionizing diagnostics and personalized medicine. These strides mark a significant leap forward in the application of nano biosensors for improved healthcare outcomes.

Advancements in Nano Biosensors:

WIRELESS NETWORKING IN THE BLOOD

Enter the era of Wireless Networking in the Blood, where the integration of wireless communication technologies is revolutionizing healthcare. Nano biosensors act as information nodes, communicating crucial health data within the bloodstream. This seamless integration enables real-time monitoring and data transmission without reliance on traditional electromagnetic waves. Witness the convergence of biology and technology, connecting the dots to establish a sophisticated network for continuous health monitoring and personalized medical interventions. This breakthrough promises to redefine how we approach healthcare and diagnostics.

IN-DEPTH RESEARCH: NETWORKING POSSIBILITIES

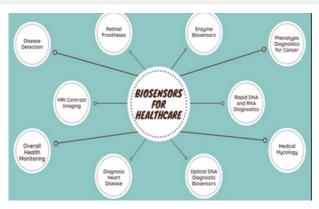
IN THIS RESEARCH SPOTLIGHT, WE DELVE INTO THE EXPLORATION OF THE NETWORKING CAPABILITIES OF NANO BIOSENSORS, SCIENTISTS AND RESEARCHERS ARE INVESTIGATING HOW THESE MINUSCULE SENSORS CAN ACT AS INTERCONNECTED NODES, COMMUNICATING VITAL INFORMATION WITHIN THE BLOODSTREAM. THE FOCUS LIES ON UNDERSTANDING THE INTRICATE WEB OF INTERACTIONS, SIGNALLING PATHWAYS, AND DATA TRANSMISSION MECHANISMS, UNLOCKING THE POTENTIAL FOR ADVANCED HEALTHCARE MONITORING SYSTEMS. THIS RESEARCH MARKS A SIGNIFICANT STRIDE TOWARDS REALIZING THE FULL NETWORKING POTENTIAL OF NANO BIOSENSORS IN THE CONTEXT OF IN VIVO APPLICATIONS.

REGULATORY INSIGHTS

The regulatory journey for in vivo networking systems involves meticulous scrutiny. Biocompatibility assessments ensure the safety of components within the bloodstream, while data security protocols safeguard patient information. Navigating through regulatory demands rigorous processes documentation and adherence to standards, fostering confidence in the reliability and ethical deployment of transformative this healthcare technology. Engaging with regulatory bodies ensures a thorough understanding of evolving compliance requirements, guiding the seamless integration of in healthcare networking into the regulatory framework.

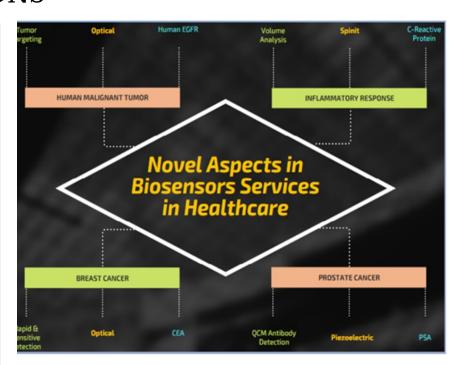
TECHNOLOGICAL SPOTLIGHT: WIRELESS PROTOCOLS AND NANOMATERIALS:

Breakthroughs wireless in communication protocols facilitate efficient data exchange, promoting real-time monitoring. Meanwhile, advancements nanomaterial biosensors with empower nano enhanced sensitivity and biocompatibility, crucial for their integration into the bloodstream. This synergy of wireless communication and nanomaterial prowess marks a significant leap in the evolution of in vivo monitoring systems.


Future Visions:

"Envisioning Tomorrow: The Future Landscape Bloodstream Communication." consider the convergence of emerging technologies. Picture a landscape where nano biosensors seamlessly integrate with smart healthcare ecosystems, leveraging power of predictive analytics and proactive interventions. Anticipate a future where real-time health insights, empowered by the interplay of biology and technology, lead to personalized treatment strategies improved patient outcomes. The horizon of bloodstream communication holds the promise of not just monitoring health but actively shaping a healthier tomorrow.

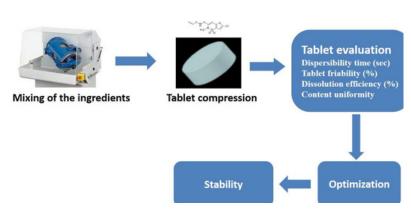
As we conclude our exploration with "Wrapping Up: Key Takeaways from the World of Bloodstream Networking," reflect on the pivotal insights gained. From overcoming biocompatibility challenges to envisioning the future of healthcare, the journey unraveled the potential of networking nano **Embrace** the biosensors. transformative impact on patient monitoring and healthcare paradigms, highlighting the collaborative efforts shaping a dynamic future in the realm of bloodstream communication.


INDUSTRY INNOVATIONS

forefront Discover the of innovation with industry leaders pioneering Networking Nano Technologies. Biosensor Companies at the vanguard of this movement are drivina advancements miniaturization, communication biomedical protocols, and engineering. By combining expertise in nanotechnology and healthcare, these pioneers shaping the future diagnostics and personalized medicine. Their commitment to boundaries pushina underscores the transformative potential of Networking Nano Biosensors, establishing them as trailblazers in the integration of technology with healthcare.

Healthcare Applications:

- These biosensors. acting as in a network, enable nodes real-time continuous and tracking of vital health within parameters the bloodstream.
- The implications span from personalized medicine to improved diagnostics, promising a transformative impact on patient care.


CHALLENGES AND SOLUTIONS:

DISCOVER THE HURDLES FACED IN THE DEVELOPMENT OF **BLOODSTREAM NETWORKING. BIOCOMPATIBILITY ISSUES TO THE INTRICACIES OF DATA** TRANSMISSION. THIS SEGMENT NAVIGATES THROUGH THE TERRAIN OF CHALLENGES, SHEDDING LIGHT ON HOW RESEARCHERS AND INDUSTRY EXPERTS **CHARTING PATHS** TO **ENSURE** THE **SEAMLESS** INTEGRATION OF NETWORKING NANO BIOSENSORS FOR EFFECTIVE AND RELIABLE IN VIVO MONITORING.

- 1. BIOCOMPATIBILITY CHALLENGES:
- 2. DATA TRANSMISSION INTEGRITY:
- 3. POWER EFFICIENCY IN MINIATURIZED DEVICES:
- 4. SECURITY AND PRIVACY CONCERNS:
- 5. INTEGRATION WITH EXISTING HEALTHCARE INFRASTRUCTURE:
 - 6. PATIENT ACCEPTANCE AND ETHICAL CONSIDERATIONS:

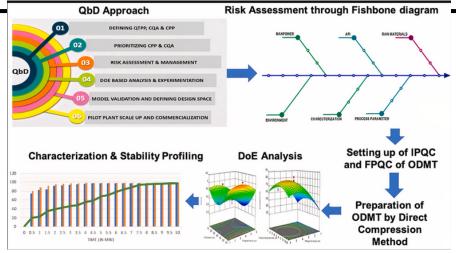
ADDRESSING **CHALLENGES** IN **BLOODSTREAM NETWORKING MANDATES COMPREHENSIVE** APPROACH. RIGOROUS RESEARCH INTO BIOCOMPATIBLE MATERIALS, SOPHISTICATED ALGORITHMS FOR DATA TRANSMISSION, INTEGRATION OF ENERGY-EFFICIENT TECHNOLOGIES, ROBUST ENCRYPTION FOR SECURITY, STANDARDIZED PROTOCOLS FOR INTEGRATION, AND **PATIENT-CENTRIC ETHICAL CONSIDERATIONS** COLLECTIVELY ENSURE SUCCESSFUL IMPLEMENTATION AND REVOLUTIONIZE HEALTHCARE MONITORING.

QBD IN TABLET COMPRESSION

Lamination problems can predicted be troubleshooted with a tableting equipment. In a trial conducted with a client of Mede pharm, a blend was crushed utilizing compression tooling from two separate suppliers on a high-speed single-punch tableting machine. The tablets with the initial created punch set lacked lamination, mimicking the high-speed rotation of a Kikusui rotary tablet press. Despite the fact that every process parameter was the same for both punch sets, the tablets created with the second punch set showed lamination. The disparity in mechanical tolerances between the die bore and the punch tip was identified as the root cause of lamination. this instance, the tableting In instrument was utilized to identify the parameter that needed to be changed (i.e., switch punch manufacturing suppliers) and troubleshoot concerns.

Pre-compression is the second process parameter that can be changed, following tooling shape. By doing this, extra air will be removed from the powder bed, which will probably improve the tablets' cohesiveness. It is expected that this extra to mimic high-speed presses, one can do direct cohesiveness will mitigate the shear stress imposed by the tablet's form and prevent capping.

Every pharmaceutical lab's ultimate goal is to reduce "time to market." Prescription, over-thecounter, and generic medicine makers have a competitive advantage when their products are the first on the market. By using quality-by-design (QbD) principles at the formulation stage, tablet flaws can be prevented early on, which will significantly cut down on time spent on the difficult and time-consuming "scale-up" phase. Scientists may be forced to address formulation problems at the pilot level or, worse still, during actual production if they wait until late in the development process, during the "production-size phase." On the other hand, a QbD method ensures maximum during safety the production from the start.

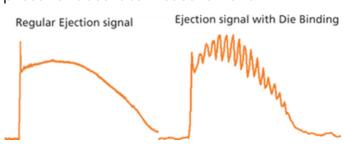

The compression/edge thickness (i.e., punch spacing) is the fourth process parameter. The capping should vanish quickly compression thickness increases because this will mechanically reduce the compression force. However, there will also be a decrease in the tablet breaking force (cohesion), which is likely to alter the disintegration time and dissolution profiles. It is necessary to thoroughly evaluate this process parameter.

It takes a lot of time and blend to adjust all these parameters on a commercial-size press, but single punch presses with high strain rate capability can be used to assess capping. These compaction simulators can be used to quickly troubleshoot tablet faults using modest amounts of mix by carrying out the previously outlined tests.

Using tableting devices (compaction simulators) scale-up and in-depth material characterization using a quality-by-design (QbD) method.

Every pharmaceutical lab's ultimate goal is to reduce "time to market." Prescription, over-thecounter, and generic medicine makers have a competitive advantage when their products are the first on the market. By using quality-by-design (QbD) principles at the formulation stage, tablet flaws can be prevented early on, which will significantly cut down on time spent on the difficult and time-consuming "scale-up" phase.

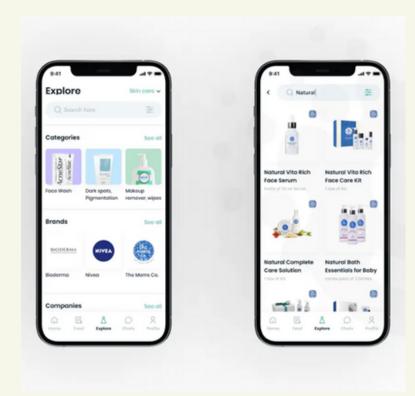
QBD IN TABLET COMPRESSION



Adjusting the numerous parameters on commercial-size press to troubleshoot tablet defects is a time-consuming process requiring substantial quantities of blend. However, a viable alternative involves the use of single punch presses with high strain rate capabilities, enabling the evaluation of capping issues with smaller blend quantities promptly. This method proves effective in addressing tablet defects on compaction simulators during the early development stages, aiding formulators in optimizing formulations before scale-up.

Quality by Design (QbD) plays a crucial role in this optimization process. Formulation scientists, guided by Quality Target Product Profiles (QTPP) and process flow charts, identify material attributes (MA), quality attributes (QA), and process parameters (PP) necessary to achieve the desired QTPP. Through a risk assessment process based on scientific understanding and experience, critical attributes and parameters are pinpointed and assessed using compaction simulators, aligning with the tablet formulation process.

Altering compression thickness affects the compression force, leading to а misconception that the compression thickness knob directly controls compression However, when the operator increases the dosage height, the compression force also increases, challenging the classification of compression force as a process parameter; it is, in fact, a quality attribute.


Furthermore, evaluating lubrication in tablet formulations is crucial. The conventional belief in the necessity of 0.5–1% lubricant quantity is questioned, with a focus on ejection force and additional quality attributes such as oscillations in the force signal after the peak. The consideration of the transmission coefficient, a ratio of upper and lower punch force, provides a comprehensive view, necessitating force sensors on both punches in an equipped R&D press for accurate measurement.

The compression force, often viewed as a process parameter, is fundamentally a quality attribute. When operating a basic rotary tablet press, operator an can manipulate dosage height and compression/edge thickness, with compression force measured by strain gauges on the pressure rolls.

By plotting the relation between compression force and tablet weight, the formulator can modify the process parameter "dosage height" to simulate changes in powder density.

MEDICONNECT


MediConnect is a mobile application that serves as a tool to connect doctors with companies that deliver medical products.

We developed this application considering two groups of users:

- Doctors. Here, we have presented a convenient search for medical products and services.
- Healthcare product companies. For them, we have added video and audio communication features to make interacting with doctors and selling products and services easier.

Our main goals in developing this app were:

- Increasing the effectiveness of interaction between doctors and healthcare product companies
- Opening new sales channels for product companies
- Creating a user-friendly interface

WE IMPLEMENTED VIDRTC, OUR VIDEO AND AUDIO COMMUNICATION TECHNOLOGY, ALLOWING SEAMLESS AND HIGH-QUALITY P2P COMMUNICATION. AZURE SPEECH RECOGNITION HAS ENHANCED THE EASE OF USER INTERACTION FURTHER AND ELIMINATED LANGUAGE BARRIERS. OUR DEVELOPERS HAVE ALSO INTEGRATED PAYPAL FOR IN-APP PAYMENTS.

AS A RESULT, MEDICONNECT ATTRACTED 360 HEALTHCARE COMPANIES AND 9,267 PHYSICIANS IN THE FIRST SIX MONTHS AFTER LAUNCH. NOW, EVERY DOCTOR USES OUR APP AT LEAST FOUR TIMES A MONTH.

New Drug Approvals

• Filsuvez (birch triterpenes)

Date of Approval: 12/18/2023

Treatment for: To treat wounds associated with dystrophic and junctional epidermolysis bullosa

• Fabhalta (iptacopan)

Date of Approval: 12/5/2023

Treatment for: To treat paroxysmal nocturnal hemoglobinuria

• Ogsiveo (nirogacestat)

Date of Approval: 11/27/2023

Treatment for: To treat adults with progressing desmoid tumors who require systemic treatment

• Zelsuvmi (berdazimer)

Date of Approval: 1/5/2024

Treatment for: To treat molluscum contagiosum.

• Exblifep (cefepime, enmetazobactam)

Date of Approval: 2/22/2024

Treatment for: To treat complicated urinary

tract infections

• <u>Letybo</u> (letibotulinumtoxinA-wlbg)

Date of Approval: 2/29/2024

Treatment for: To temporarily improve the appearance of moderate-to-severe glabellar lines

• Wainua (eplontersen)

Date of Approval: 12/21/2023

Treatment for: To treat polyneuropathy hereditary transthyretin-mediated amyloidosis

• <u>Truqap</u> (Rcapivasertib)

Date of Approval: 11/16/2023

Treatment for: To treat breast cancer that meets certain disease criteria

• Ryzneuta (efbemalenograstim alfa-vuxw) Date of Approval: 11/16/2023

Treatment for: To treat neutropenia

DEPARTMENT ACTIVITIES

Patent

Dr. N Raghavendra Naveen has been granted a patent (number 202041040933) for his innovation on "SYSTEM FOR ORGANIZING MEDICINE TO MONITOR VITALS AND MANAGE DISEASES". After a dedicated and rigorous three-and-a-half-year examination process, the patent recognizes the significance and novelty of invention contribution to healthcare. Congratulations on obtaining the grant for the fourth patent

Awards & e-Posters

Congratulations Ms. Likitha A, for Securing Best e-Poster Award 7.

We're thrilled to announce that Manisha S Jain, a student in the 7th semester of B. Pharm, along with Srikruthi K S, have had their paper accepted by Oral Oncology Reports (Elsevier and Scopus Indexed). The "Navigating paper, titled the Frontier: Comprehensive **Insights** into **CRISPR Technology** Advancements. **Delivery** Strategies, and Ethical Considerations in Cancer Research," was guided and supported by Dr. Prakash Goudanavar and Dr. N Raghavendra Naveen from the Department of Pharmaceutics.

DEPARTMENT ACTIVITIES

Publications (Jan & Feb) in Scopus Indexed Journals

Design and Development of Anti-fungal Topical Gel Loaded with Solid Lipid Nanoparticles for Wound Healing

Girish Meravanige¹, Ranjitha B², Prakash Goudanavar², GSN Koteswara Rao¹, B Nirmala Devi⁴, N. Raghavendra Naveen²•, Afzal Haq Asif², Sree Harsha Nagaraja⁴⁻, Mohammed Monirul Islam•, Pavan Kumar Pavagada Sreenivasalu¹, Mallikarjun Telsang¹ō, Krishna Swaroop Duddi Sreehari¹

omedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, SAUDI ARABIA

- *Department of Pharmaceutics, 5 indichunchangsi (Oligo of Pharmacy, Alchunchanagi) (University, B.C., Nagar, Karnataka, INDIA.

 *Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy, and Technology Management, SVKM's NMIMS, Vile Parle
 (W), Mumbai, Maharashtra, INDIA.

 *Department of Pharmacognosy, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh, INDIA.

- **Department of Pharmacy pacting, college of Pharmacy, New Boyanapalis, Rajampet, Andria Pracesn, Inclus
 **Department of Pharmacy Pacting, college of Clinical Pharmacy, King Faisal University, Al-Ahas, ASUDI ARABIA,
 **Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahas, ASUDI ARABIA,
 **Department of Pharmaceutics, Vidya Sui College of Pharmacy, Ciff Sarjapura Road, Bangalons, Karnataka, INDA,
 **Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahas, ASUDI ARABIA,
 **Department of Restorative demistrity and Endodortics, College of Dentistry, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, College of Medicine, King Faisal University, Al-Ahas, SAUDI ARABIA,
 **Collegery, Collegery, Collegery,

DODGE OWNER DESCRIPTION

ABSTRACT

Background: The topical administration of antifungal drugs by Solid Lipid Nanoparticles (SINs) has enormous potential. This study aimed to develop a topical 5-flucytosine-loaded SINs get to improve the efficacy of the well-known antifungal drugs in the treatment of wound healing. Materials and Methods: In order to create 5-flucytosine-Issae a five-level, two-factor Central-composite design was used. Stearic acid and Poloname 407 concentrations of surfactants were chosen as independent factors, and particle size and %Entrapment Efficiency (%EE) were chosen as dependent variables. The produced 5-flucytosine-SINs were examined using SEM analysis, eat potential, polydispersity index, and particle size measurements. Additionally, Carbopol 934 was used to incorporate the improved SFINs some discovered to have a nessentially spherical shape and no aggregation. 5-flucytosine-SINs were discovered to have a particle size of 720.4 mm and an Entrapment Efficiency (EE) of 90.28%. The in who release, among other assessment criteria, was evaluated for the improved SIN gets. Conclusion: The study's conclusions imply that the topical gels made with 5-flucytosine-loaded SINs must be effective in the management of wound healing.

Keywords: 5-Flucytosine, Solid lipid nanoparticle, Central-composite design, Topical delivery, Optimization.

Raghavendra Naveen Department of Pharmaceutics, Sri Adachunchanagiri College of Pharmacy, Adachunchanagiri University, B.G. Nagar Mandya-571448, Karnataka, INDIA

Dr. Girish Meravanige

partment of Biomedical Sciences College of Medicine, King Faisal University, Al-Ahsa, SAUDI ARABIA.

Beceived: 22-06-2023: Revised: 25-09-2023; Accepted: 22-10-2023

INTRODUCTION

The diverse applications of Nanoparticles (NPs) across a range of biological, pharmacological, and medical fields have led to a high level of value in recent years. When seen structurally, they scarcely even approach 100 nm in size. Several drugs, including vaccines, tiny hydrophobic and hydrophilic chemicals, and biological molecules, can be controlled by these NPs. 1 NPs can be utilized as scaffolds for tissue engineering, for targeted medication delivery, and for disease diagnosis, among other things.² Nanoparticles

DOI: 10.5530/ijper.58.1.13

right Author (s) 2024 Distributed under ive Commons CC-BY 4.0

(NPs) are frequently used as drug delivery systems, cellular scaffolds, carbon nanotubes, nanofibers, and nanocapsules. In order to successfully deliver a given drug at a precise time and place for maximal efficacy, it is imperative to manage particle size, surface characteristics, and other aspects of NP production as a drug delivery system." In addition to being biocompatible and biodegradable, the NPs used for drug delivery should also have the following characteristics: prompt release, optimal mechanical properties, and ease of production. Surface modification enables the tracking of NPs that are ingested through phagocytosis or the circulatory system and then preserved in the circulatory system.

SLNs are advantageous in many ways, including their low toxicity, ease of incorporation, ability to improve the bioavailability of lipophilic compounds, ability to stop the degradation of

Nasal Administration of Dolutegravir Loaded Nanoparticle Based Mucoadhesive in situ Gel: Design and in vivo Assessment

Nagaraja Sreeharsha`^* , Sandhyanjali Cherukuri', Nimbagal Raghavendra Naveen', Prakash Goudanavar^*, Santosh Fattepur', Bandar Aldhubiab', Rashed M Almuqbil', Anroop B Nair'

Department of Pharmacoutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahia, SAUDI ARABIA.

*Department of Pharmacoutics, Vidya Siri, College of Pharmacy, Off Serjapura Road, Bangalore, Karnataka, INDIA.

*Department of Pharmacoutics, Siri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, 8.G. Nagas, Karnataka, INDIA.

*School of Pharmacy, Management and Science University, Sokyen, Shah Alam, Salangos, WALAFISIA.

ABSTRACT

Background: To assess the potential for targeting the brain through intransal delivery, this study focuses on optimizing and developing a mucoadhesive in situ gel formulation containing. Delutegravir nanoparticles, Materials and Methods: Employing a central composite design, the study optimized the concentration of variables of hydroxyporopy methyleabless [MPMC, X], and Polosamer 407 (X) on the gelation temperature (Y) and drug release (Y). The optimized drug loaded nanoformulations were assessed for various pharmaceutical features, with on feature and evaluated in vivo. Results: Both variables significantly impacted the responses (pc.0.05). The selected formulation displayed beneficial reheated with the content of the policy of of the po

Keywords: Dolutegravir, in situ gel, Nasal route, Brain, in vivo

College of Clinical Pharmacy, King Fa University, Al-Ahra-31982, SAUDI ARU Email: sharsha@kfu.edu.sa

Received: 12-07-2023; Revised: 26-10-2023; Accepted: 30-12-2023.

INTRODUCTION

Nasal medicine delivery is one of the most difficult problems that to oral drug administration, nasal delivery is significantly more effective and has limited side effects. From a pharmacokinetic standpoint, intranasal administration overcomes the poor absorption in the digestive system, bypasses the blood brain burrier and evades first-pass metabolism, which in turn results in improved bioavailability.²³ The nasal route provides direct delivery of actives to the brain via the intranasal pathway and the endothelium membrane is highly permeable with a rich blood supply.4 In this context, the potential of nanocarriers for brain targeted delivery has been extensively studied in the recent past. 3.4 On the other hand, drug delivery techniques that produce

in situ gel by forming a solid or semi-solid depot from a lic formulation have received attention in the last two decade When subjected to physiological circumstances, in situ activi When subjected to posysostogical circumstances, m subjective gel-forming systems change from a liquid phase to a pel pha by situ-gelling liquids have been widely investigated in di-brain delivery of therapeutic actives by applying them in masal cavity. Liquids applied inside the nasal cavity are cap of changing from liquids to gels due to a chemical or phys change brought on by the physiological settings.

The use of poloxamer 407 in developing in situ gel has be explored in various studies. 14 Typically, this polymer is a non-is exported in various senses. Typicany, mis polymer is a non-set triblock synthetic copolymer that is capable of phase transit when applied to the mucous membrane. Indeed, it posses some distinctive characteristics like mucoudhesion, low toxic tissue sensitivity, controlled drug release and is compatible v various pharmaceutical actives and excipients.¹³ The combina of poloxamer with Hydroxypropyl Methylcellulose (HPMC) demonstrated its potential as an in situ gel in delivering sev drug molecules in various investigations.1

DOI: 10.5530/lioet58.2.41

Copyright Author (c) 2024 Distributed under Creative Commons CC-BY 4.8

Contents lists available at ScienceDirect

Oral Oncology Reports

Navigating the frontier: Comprehensive insights into CRISPR technology advancements, delivery strategies, and ethical considerations in cancer research

Manisha S. Jain ", K.S. Srikruthi ", Prakash Goudanavar ", N Raghavendra Naveen "

A B S T R A C T

This review article provides a thorough exploration of the multifacent landscape surrounding CRSSPR technology, with a specific focus on its evolution from genome editing to therespecie applications in cancer research. Beginning with an overview of the principles underplanning CRSSPR technology, the narraive unfolds to elucidate the intricate cellular pathways influenced by CRISFR. The review devices into the advancements that have propelled CRISFR to the foresteroid or disciplinary and pathons of the properties and post of the properties of the properties and post of the properties of the properties of the properties and properties of the properties of

CREPR, or Clustered Regularly Interspaced Short Palindromic Reports, refers to concise, repeating IDNA sequences present in the genomes of many bacteria. These sequences are interspersed with spacer segments containing distinct genetic codes. Within the genetic makerup of bacteria and archaesa, one encounters naturally occurring CREPR elements. Initially identified as integral components of the prelaxyotic immune system, these elements serve as a defense mechanism against vital and plasmid DNA. Equipped with a genetic memory, they empower cells to adepthy recognize and eliminate pathogens. The CRESPR yarrays, CREPR proteins, a prototoper adjacent most (PAM), single guide RNA (egRNA) and Target DNA Modification [1]. The CRESPR array, a potent genomic editing tool, consists of two main components a caustet with DNA repeats (21–47 base pairs) interspersed with non-repetitive sequences, and CRISPR, or Clustered Regularly Interspaced Short Palindromic Rea collection of CAS genes strategically marked by duplicate DNA se

a collection of CAS genes strategically marked by duplicate DNA sequences (repeats) interspersed with variable sequences (spacers) [1]. CAS proteins, coded by operoon near the CRISPR sequence, function as mediants, helicases, polymers, and polymedecide binding poterion. Acting like science, CAS genes, distributed across different (CRSPR, explored, distributed) across different (CRSPR, varies) [1]. The innate CRSPR, where involves guide RNA transcribed from the CRISPR array [1]. The innate CRSPR system twolves guide RNA transcribed from the CRISPR array, directing CAS poteins to sizvading viral or plasmid DNA. The guide RNA included Tacer RNA as a binding scalided and cripps RNA (crRNA), a 132–20 nucleotide sequence complementing the target DNA. This dual RNA structure guides CAS proteins to precisely cleave the targeted genetic material.

Adjacent to target DNA in hostorial and control of the control of the

material.

Adjacent to target DNA in bacterial and archaeal genomes, PAM sequences are crucial for CAS proteins to recognize the target DNA, influencing the specificity of the CRISPR mechanism. The CRISPR

https://doi.org/10.1016/j.oor.2024.100224 Received 3 February 2024; Accepted 18 February 2024

International Journal of Applied Pharmaceutics

ISSN-0975-7058

Vol 16. Issue 2, 2024

FORMULATION AND EVALUATION OF SUSTAINED-RELEASE FLOATING MATRIX TABLETS O VALGANCICLOVIR HYDROCHLORIDE

YASHAVANTH G. * O, PRAKASH GOUDANAVAR O, MALLAMMA T. O, SANTHOSH FATTEPUR O aceutics, Sri Adichunchanagiri College of Pharmacy, BG Nagar, Karnataka 571488, India responding author; Yashavanth G.; Email: yashavanthg1995@gmail.com

Received: 12 Sep 2023, Revised and Accepted: 10 Jan 2024

Methods: The tablets were prepared using hydrophilic and hydrophobic polymers such as ethyl cellulose, lilydroxy-propyl methylcellulose (IIPM and Povidone. The formulations were subjected to evaluation characteristics such as drug content, hardness, friability, floating lag time, to floating time, and le viero drug dissolution studies.

Results: The formulation composition and method of manufacturing are novel for this particular active moiety and robustness was assessed using contral composition design. All the formulation trials exhibited more than 90% of drug release in 12 h duration, with a floating lag time of more than 11 h, and drug content was found more than 90% across the batches. The hardness and frialbility profiles were found to be uniform across it batches. The preliminary evaluation confirms the received drug is pure and FTIR results show that the drug and excipionts are compatible. The hardness and frialbility profiles were found consistent across the batches. All the formulation trials of central composite design have shown me than 90% of drug release in 12 h duration, with a floating lag time of more than 11 h, and drug content was found more than 90% across it.

Keywords: Gastroprotective, Valganciclovir hydrochloride, AIDS, DOE

Human cytomogalovirus (CMV) earns its name from the characteristic cytomogalic appearance of intramedour inclusions in infected citis, an appearance first described in 1881. As a member of the Herpenviridas family, human herpes virus 5 (1897/5), or CMV, is a double-estranded DNA virus capable of a wide spectrum of diseases in humans [1].

Among many anti-virial drugs, vulgancichovir hydrochlorde is a potent anti-virial agent that has been appreved for the treatment of cytomegolovirus diseases like CMV retinitis in patients with acquired immunodrificiency syndrome (AIDS) and for the prevention of cytomegolovirus (CMV) disease in kidney, heart, and kidney-pancreas transplastation. Valgancicidovir hydrochlorde is the L-monovaline exter of ganciclovir and is a stable prodrug of ganciclovir with improved absorption. Valgancictorir hydrochloride is described in detail in United States patent No. 6,083,953 [2].

in iterate in transes described by a privent Non. 1993. [2]. One all administration is the most verstaffe, convenient, and commonly employed route of drug delivery for systemic action Indeed, for controlled releases systems, the oral route of administration has received more attention, and success because gestrointestical physiology offers more flexibility in desage form design than other routes [3]. There has been considerable research ever the last decade on the penaltility of controlled and side-appecific delivery as the CIT by controlling the gestrointestical transit of orally administrated desage forms using gastro-retentive drug delivery system (CIDIOS). Such GIDIOS possess the ability to retain the desage forms in the

contents and remain in the stomach for a prolonged period. a preferred as they are economical and have improved patic compliance and they are advantageous for drugs absorbed from it stomach [7]. To formulate a successful gastroprotective drug delive system various technologies developed until now, i.e., high densi (inking), floating bio-or musconflusive, expandable, super pore hydroget, magnetic systems, etc. [8]. Floating dosage forms may made as tablets or capasites by using appropriate excipients a including gae-generating agents, which give the dosage form busyon in gastrointestinal fluids [9]. The present study aimed to formulate a evaluate the formulated sustained release floating matrix tablets valganction's hydrochloride to produce a stable and bioavailal dosage form. MATERIALS AND METHODS

Materials

Valganciclovir HCI (99.50% purity), Magnesium staarate, and to were obtained as a gift sample from Strides pharma, Bangales India, Microcrystalline orbidose, Ethyl celhalose, and Povidona-1-were obtained from Stakinou Life Sciences, Bangaleve India. Solit bicarboaste and colloidal silicon dioxide are obtained from Shift Medicare, Ohlassprie, India.

Melting point evaluati

The melting point of an organic solid can be determine

DEPARTMENT ACTIVITIES

Guest Lecturers

Department of Pharmaceutics and Regulatory Affairs, organized Guest Lecture on "Regulatory Affairs - An Overview" to the 1st M Pharm students 26th Feb 2024, from the eminent Speaker - Dr Kaushik Devaraju , Director, Veenaraj Technologies Pvt. Ltd., Bengaluru, Karnataka, India. Delivered lecture on:

Basics concepts of Regulatory Affairs (Introduction, Objectives, Different Regulatory Authorities)

Guest Lecture on "Medical Devices - An Overview" to the I M Pharm students 27th Feb 2024, from the eminent Speaker - Dr M P Gowrav, Assistant Professor, Department of Pharmaceutics & Regulatory Affairs, JSS College of Pharmacy, JSSAHER, Mysuru, Karnataka, India.

Delivered lecture on

- Basics concepts of Medical Devices & IVDs in US, EU & India
- Approval Process for Medical Devices & IVDs in US, EU & India
- Use of Artificial Intelligence in Medical Devices: Pioneering Tomorrow's Healthcare Today
- Future of AI Optimized Medical Devices

Guest Lecture on "Regulatory Affairs - An Overview" to the I M Pharm students on 1st Feb 2024, from the eminent Speaker - Dr M P Venkatesh , Associate Professor, Dept of Pharmaceutics and Regulatory Affairs, JSS College of Pharmacy, JSSAHER, Mysuru, Karnataka, India.

Delivered lecture on

- Basics concepts of Regulatory Affairs (Introduction, Objectives, Different Regulatory Authorities)
- Regarding the collaboration with Biocon Academy and courses under GRA

